

Unterrichtsvorhaben	Inhaltsfelder,	Konkretisierte Kompetenzerwartungen		
Unterrichtsvornaben	Inhaltliche Schwerpunkte	Schülerinnen und Schüler		
Unterrichtsvorhaben I	Grundlagen der Mechanik	 erläutern die Größen Ort, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Energie, Leistung, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (S1, K4), 		
Physik in Sport und Verkehr I	 Kinematik: gleichförmige und gleichmäßig beschleunigte Bewegung; 	 unterscheiden gleichförmige und gleichmäßig beschleunigte Bewegungen und erklären zugrunde liegende Ursachen auch am waagerechten Wurf (S2, S3, S7), 		
Wie lassen sich Bewegungen beschreiben, vermessen und	freier Fall; waagerechter Wurf; vektorielle Größen	 stellen Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw. Vektoraddition dar (S1, S7, K7), 		
analysieren?		 planen selbstständig Experimente zur quantitativen und qualitativen Untersuchung einfacher Bewegungen (E5, S5), 		
ca. 25 Ustd.		 interpretieren die Messdatenauswertung von Bewegungen unter qualitativer Berücksichtigung von Messunsicherheiten (E7, S6, K9), 		
		 ermitteln anhand von Messdaten und Diagrammen funktionale Beziehungen zwischen mechanischen Größen (E6, E4, S6, K6), 		
		 bestimmen Geschwindigkeiten und Beschleunigungen mithilfe mathematischer Verfahren und digitaler Werkzeuge (E4, S7). (MKR 1.2) 		
		 beurteilen die Güte digitaler Messungen von Bewegungsvorgängen mithilfe geeigneter Kriterien (B4, B5, E7, K7), (MKR 1.2, 2.3) 		

ı	h	nto	rric	hte	:vor	ha	ben	П
L	J	IILE	1110	, I I L Z	VUI	Пa	nen	ш

Physik in Sport und Verkehr II

Wie lassen sich Ursachen von Bewegungen erklären?

ca. 10 Ustd.

Grundlagen der Mechanik

Dynamik: Newton'sche
Gesetze; beschleunigende
Kräfte; Kräftegleichgewicht;
Reibungskräfte

- erläutern die Größen Ort, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Energie, Leistung, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (S1, K4),
- analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl anhand wirkender Kräfte als auch aus energetischer Sicht (S1, S3, K7),
- stellen Bewegungs- und Gleichgewichtszustände durch Komponentenzerlegung bzw.
 Vektoraddition dar (S1, S7, K7),
- erklären mithilfe von Erhaltungssätzen sowie den Newton'schen Gesetzen Bewegungen (S1, E2, K4),
- erläutern qualitativ die Auswirkungen von Reibungskräften bei realen Bewegungen (S1, S2, K4).
- untersuchen Bewegungen mithilfe von Erhaltungssätzen sowie des Newton'schen Kraftgesetzes (E4, K4),
- begründen die Auswahl relevanter Größen bei der Analyse von Bewegungen (E3, E8, S5, K4)

Unterrichtsvorhaben III Auffahrunfälle und andere Katastrophen - Erhaltungssätze in verschiedenen Situationen Wie lassen sich mit Erhaltungssätzen Bewegungsvorgänge vorhersagen und analysieren? ca. 15 Ustd.	Grundlagen der Mechanik Erhaltungssätze: Impuls; Energie (Lage-, Bewegungs- und Spannenergie); Energiebilanzen; Stoßvorgänge	 erläutern die Größen Ort, Strecke, Geschwindigkeit, Beschleunigung, Masse, Kraft, Energie, Leistung, Impuls und ihre Beziehungen zueinander an unterschiedlichen Beispielen (S1, K4), beschreiben eindimensionale Stoßvorgänge mit Impuls- und Energieübertragung (S1, S2, K3), analysieren in verschiedenen Kontexten Bewegungen qualitativ und quantitativ sowohl anhand wirkender Kräfte als auch aus energetischer Sicht (S1, S3, K7), erklären mithilfe von Erhaltungssätzen sowie den Newton'schen Gesetzen Bewegungen (S1, E2, K4), untersuchen Bewegungen mithilfe von Erhaltungssätzen sowie des Newton'schen Kraftgesetzes (E4, K4), begründen die Auswahl relevanter Größen bei der Analyse von Bewegungen (E3, E8, S5, K4), bewerten Ansätze aktueller und zukünftiger Mobilitätsentwicklung unter den Aspekten Sicherheit und mechanischer Energiebilanz (B6, K1, K5), (VB D Z 3) bewerten die Darstellung bekannter vorrangig mechanischer Phänomene in verschiedenen Medien bezüglich ihrer Relevanz und Richtigkeit (B1, B2, K2, K8). (MKR 2.2, 2.3)
Unterrichtsvorhaben IV Bewegungen im Weltraum Wie bewegen sich die Planeten im Sonnensystem? Wie lassen sich aus (himmlischen) Beobachtungen Gesetze ableiten?	 Kreisbewegung, Gravitation und physikalische Weltbilder Kreisbewegung: gleichförmige Kreisbewegung, Zentripetalkraft Gravitation: Schwerkraft, Newton´sches Gravitationsgesetz, Kepler´sche Gesetze, Gravitationsfeld 	 erläutern auch quantitativ die kinematischen Größen der gleichförmigen Kreisbewegung Radius, Drehwinkel, Umlaufzeit, Umlauffrequenz, Bahngeschwindigkeit, Winkelgeschwindigkeit und Zentripetalbeschleunigung sowie deren Beziehungen zueinander an Beispielen (S1, S7, K4), beschreiben quantitativ die bei einer gleichförmigen Kreisbewegung wirkende Zentripetalkraft in Abhängigkeit der Beschreibungsgrößen dieser Bewegung (S1, K3), erläutern die Abhängigkeiten der Massenanziehungskraft zweier Körper anhand des Newton schen Gravitationsgesetzes im Rahmen des Feldkonzepts (S2, S3, K4), erläutern die Bedeutung von Bezugsystemen bei der Beschreibung von Bewegungen (S2, S3, K4),

ca. 20 Ustd.	Wandel physikalischer Weltbilder: geo- und heliozentrische Weltbilder; Grundprinzipien der speziellen Relativitätstheorie, Zeitdilatation	 interpretieren Messergebnisse aus Experimenten zur quantitativen Untersuchung der Zentripetalkraft (E4, E6, S6, K9), deuten eine vereinfachte Darstellung des Cavendish-Experiments qualitativ als direkten Nachweis der allgemeinen Massenanziehung (E3, E6), ermitteln mithilfe der Kepler'schen Gesetze und des Newton'schen Gravitationsgesetzes astronomische Größen (E4, E8),
Unterrichtsvorhaben V Weltbilder in der Physik	Kreisbewegung, Gravitation und physikalische Weltbilder • Wandel physikalischer Weltbilder: geo- und	 stellen Änderungen bei der Beschreibung von Bewegungen der Himmelskörper beim Übergang vom geozentrischen Weltbild zu modernen physikalischen Weltbildern auf der Basis zentraler astronomischer Beobachtungsergebnisse dar (S2, K1, K3, K10),
Revolutioniert die Physik		 erläutern die Bedeutung der Invarianz der Lichtgeschwindigkeit als Ausgangspunkt für die Entwicklung der speziellen Relativitätstheorie (S2, S3, K4),
unsere Sicht auf die Welt?	heliozentrische Weltbilder; Grundprinzipien der speziellen	 erläutern die Bedeutung von Bezugsystemen bei der Beschreibung von Bewegungen (S2, S3, K4),
ca. o osta.	Relativitätstheorie, Zeitdilatation	 erklären mit dem Gedankenexperiment der Lichtuhr unter Verwendung grundlegender Prinzipien der speziellen Relativitätstheorie das Phänomen der Zeitdilatation zwischen bewegten Bezugssystemen qualitativ und quantitativ (S3, S5, S7).
		• ziehen das Ergebnis des Gedankenexperiments der Lichtuhr zur Widerlegung der absoluten Zeit heran (E9, E11, K9, B1).
		 ordnen die Bedeutung des Wandels vom geozentrischen zum heliozentrischen Weltbild für die Emanzipation der Naturwissenschaften von der Religion ein (B8, K3),
		 beurteilen Informationen zu verschiedenen Weltbildern und deren Darstellungen aus unterschiedlichen Quellen hinsichtlich ihrer Vertrauenswürdigkeit und Relevanz (B2, K9, K10) (MKR 5.2)